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Welcome to the official Limelight documentation.

Limelight is an easy-to-use smart camera for FRC. Refer to the table of contents below to get started.

Getting Started 1



CHAPTER 1

Getting Started

This page will cover the content on the official website’s “Getting Started” page.

• Mounting

• Wiring

• Imaging

• Networking Setup

• Basic Programming

1.1 Mounting

Limelight 2

Use four 1 1/2” 10-32 screws and nylock nuts to mount your Limelight.

2
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Note:

Q. What is the purpose of the status LEDs?

A. The green LED will blink quickly when a target has been acquired. The yellow LED will blink if the camera is set
to use a dynamic IP address, and will stay solid if the camera is using a static IP address.

Limelight 1

Use four 1 1/4” 10-32 screws and nylock nuts to mount your Limelight.

1.1. Mounting 3
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1.2 Wiring

Note: Limelight takes a 12V input, but is built to function down to 6V. Its LEDs have a constant brightness down to
7V.

Standard Wiring

• Do not run wires to your VRM.

• Run two wires from your limelight to a slot on your PDP (NOT your VRM).

• Add any breaker (5A, 10A, 20A, etc.) to the same slot on your PDP.

• Run an ethernet cable from your Limelight to your robot radio.

Power-over-Ethernet (PoE) Wiring

Note: PoE allows you to add both power and network connectivity to your Limelight via an Ethernet cable.

Warning: This is not standard 44V PoE - this is why you must use a passive injector with 12V.

• (LIMELIGHT 1 ONLY) Ensure that your Limelight’s power jumper is set to the “E” position.

• Connect a passive Passive PoE Injector to your PDP (NOT your VRM).

1.2. Wiring 4

http://www.revrobotics.com/rev-11-1210/
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• Add any breaker (5A, 10A, 20A, etc.) to the same slot on your PDP.

• Run an ethernet cable from your Limelight to your passive POE injector.

1.3 Imaging

Note: Limelight will receive software updates for improvements and features to accomodate the game if necessary.

Limelight 2

• Do not use a Windows 7 machine.

• Remove power from your limelight.

• Download the latest drivers, flasher tool, and image from from the Downloads Page.

• Install the Balena Etcher flash tool.

• Run a USB-MicroUSB cable from your laptop to your limelight.

• Run “Balena Etcher”.

• It may take up to 20 seconds for your machine to recognize the camera.

• Select the latest .zip image in your downloads folder

• Select a “Compute Module” device in the “Drives” menu

• Click “Flash”

• Once flashing is complete, remove power from your limelight

Limelight 1

Warning: Some versions of Limelight 1 are electrostatically sensitive around the micro-usb port. To prevent
damaging the port, ground yourself to something metal before you connect to the micro usb port. This will ensure
your personal static charge has been discharged.

• Do not use a Windows 7 machine.

• Remove power from your limelight.

• Download the latest drivers, flasher tool, and image from from the Downloads Page.

• Install the Balena Etcher flash tool.

• Run a USB-MicroUSB cable from your laptop to your limelight.

• Apply power to your limelight.

• Run “Balena Etcher”.

• It may take up to 20 seconds for your machine to recognize the camera.

• Select the latest .zip image in your downloads folder

• Select a “Compute Module” device in the “Drives” menu

• Click “Flash”

1.3. Imaging 5
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• Once flashing is complete, remove power from your limelight

Warning: Only connect the microUSB cable while imaging. Limelight enters a special flash mode while the
microUSB cable is connected. You will not be able to access the web interface while Limelight is in flash mode.

1.4 Networking Setup

We highly reccomend following the static IP instructions for reliability during events.

Follow these steps before starting:

• Go to add/remove programs in windows, and search for “bonjour”

• How many items do you see?

– If there are two (2) items with “bonjour” in their names, uninstall “bonjour print services”

– If there are no (0) items with “bonjour” in their names, install bonjour from our Downloads page.

• Reboot your robot and computer.

• Follow the steps listed below.

Static IP Address (Recommended)

• Follow the bonjour-related instructions above.

• Power-up your robot, and connect your laptop to your robot’s network.

• After your Limelight flashes its LED array, navigate to http://limelight.local:5801. This is the configuration
panel.

• Navigate to the “Settings” tab on the left side of the interface.

• Enter your team number and press the “Update Team Number” button.

• Change your “IP Assignment” to “Static”.

• Set your Limelight’s IP address to “10.TE.AM.11”.

• Set the Netmask to “255.255.255.0”.

• Set the Gateway to “10.TE.AM.1”.

• Click the “Update” button.

• Power-cycle your robot.

• You will now be access your config panel at http://10.TE.AM.11:5801, and your camera stream at http://10.TE.
AM.11:5800

Dynamic IP Address (Not recommended)

• Follow the bonjour-related instructions above.

• Power-up your robot, and connect your laptop to your robot’s network.

• After your Limelight flashes its LED array, navigate to http://limelight.local:5801. This is the configuration
panel.

• Navigate to the “Settings” tab on the left side of the interface.

• Enter your team number and press the “Update Team Number” button.

1.4. Networking Setup 6
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• Change your “IP Assignment” to “Automatic”.

• Click the “Update” button.

• Power-cycle your robot.

• You can continue be access your config panel at http://limelight.local:5801, and your camera stream at http:
//limelight.local:5800

Note:

Q. Why do we reccommend a static IP?

A. First, it shaves multiple seconds off Limelight’s boot time. Second, teams have historically had issues with
DHCP assignment and mDNS responders on actual FRC fields and with event radio firmware.

We recommend setting static IP addresses on your robo-rio and driverstation as well. The networking settings to
use on all of these devices can be found near the bottom half of this web page: https://wpilib.screenstepslive.com/s/
currentCS/m/troubleshooting/l/319135-ip-networking-at-the-event

Note:

Q. How do I reset the IP address?

A. After your Limelight has booted, hold the config button on the front face of the camera until the LEDs start
blinking. Power-cycle your robot, and your Limelight will have an automatically-assigned IP address.

• If the above steps do not fix the problem, install Angry IP scanner and find the address for your limelight.

• Go to <limelightaddress>:5801, and give your limelight a .11 static IP.

• From this point onward, you can rely on the static IP to access the page.

1.5 Basic Programming

For now, we just need to get data from the camera to your robot. Limelight posts targeting data to Network Tables at
100hz. The default update rate for NetworkTables is 10hz, but Limelight automatically overwrites it to allow for more
frequent data transfer.

To get started, we recommend reading four values from the “limelight” Network Table at at least 100hz. Our code
samples will show you exactly how to do this. The offsets to your target (in degrees) are sent as “tx” and “ty”. These
can be used to turn your robot, turn a turret, etc. The target’s area, sent as “ta”, may be used a rough indicator of
distance to your target. Area is a value between 0 and 100, where 0 means that your target’s hull area is 0% of the

1.5. Basic Programming 7
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total image area, and 100 means that your target’s hull fills the entire image. The rotation or “skew” of your target is
returned as “ts”. If all values are equal to zero, no targets exist.

In addition, you may control certain features by setting values in NetworkTables. See the complete NT API here:
Complete NetworkTables API

Read the following from the “limelight” table

tv Whether the limelight has any valid targets (0 or 1)
tx Horizontal Offset From Crosshair To Target (-27 degrees to 27 degrees)
ty Vertical Offset From Crosshair To Target (-20.5 degrees to 20.5 degrees)
ta Target Area (0% of image to 100% of image)

Write the following to the “limelight” table

ledMode Sets limelight’s LED state
0 use the LED Mode set in the current pipeline
1 force off
2 force blink
3 force on

camMode Sets limelight’s operation mode
0 Vision processor
1 Driver Camera (Increases exposure, disables vision processing)

pipeline Sets limelight’s current pipeline
0 .. 9 Select pipeline 0..9

Java

NetworkTable table = NetworkTableInstance.getDefault().getTable("limelight");
NetworkTableEntry tx = table.getEntry("tx");
NetworkTableEntry ty = table.getEntry("ty");
NetworkTableEntry ta = table.getEntry("ta");

//read values periodically
double x = tx.getDouble(0.0);
double y = ty.getDouble(0.0);
double area = ta.getDouble(0.0);

//post to smart dashboard periodically
SmartDashboard.putNumber("LimelightX", x);
SmartDashboard.putNumber("LimelightY", y);
SmartDashboard.putNumber("LimelightArea", area);

Don’t forget to add these imports:

import edu.wpi.first.wpilibj.smartdashboard.SmartDashboard;
import edu.wpi.first.networktables.NetworkTable;
import edu.wpi.first.networktables.NetworkTableEntry;
import edu.wpi.first.networktables.NetworkTableInstance;

1.5. Basic Programming 8
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LabView

C++

std::shared_ptr<NetworkTable> table = nt::NetworkTableInstance::GetDefault().GetTable(
→˓"limelight");
double targetOffsetAngle_Horizontal = table->GetNumber("tx",0.0);
double targetOffsetAngle_Vertical = table->GetNumber("ty",0.0);
double targetArea = table->GetNumber("ta",0.0);
double targetSkew = table->GetNumber("ts",0.0);

Don’t forget to add these includes:

include "frc/smartdashboard/Smartdashboard.h"
include "networktables/NetworkTable.h"
include "networktables/NetworkTableInstance.h"

Python

from networktables import NetworkTables

table = NetworkTables.getTable("limelight")
tx = table.getNumber('tx',None)
ty = table.getNumber('ty',None)
ta = table.getNumber('ta',None)
ts = table.getNumber('ts',None)

1.5. Basic Programming 9



CHAPTER 2

Building A Pipeline

To configure a limelight vision pipeline, first access its web interface at http://10.te.am.11:5801. If you have opted to
use a dynamically assigned ip-address, access the interface at http://limelight.local:5801.

The “Tracking” page is comprised of five tuning tabs:

• Input

• Thresholding

• Contour Filtering

• Output

• 3D

2.1 Input

The Input Tab hosts controls to change the raw camera image before it is passed through the processing pipeline.

2.1.1 Pipeline Type

Controls the desired pipeline type. Switch to “GRIP” if you want to use a GRIP pipeline.

2.1.2 Source Image

Controls the source of the image that is passed through the pipeline. Switch to “Snapshot” to test your vision pipeline
on a stored Snapshot.

This control auto-resets to “Camera” when the GUI is closed.

10
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2.1.3 Resolution

Controls the resolution of the camera and vision pipeline. We recommend using the 320x240 pipeline unless you are
utilizing 3D functionality.

320x240 pipelines execute at 90fps, while 960x720 pipelines execute at 22 fps.

2.1.4 LEDs

Controls the default LED mode for this pipeline. This may be overidden during a match with the “LED” network table
option.

2.1.5 Orientation

Controls the orientation of incoming frames. Set it to “inverted” if your camera is mounted upside-down.

2.1.6 Exposure

Controls the camera’s exposure setting in .1 millisecond intervals. Think of a camera as a grid of light-collecting
buckets - exposure time controls how long your camera’s “buckets” are open per frame. Lowering the exposure time
will effectively darken your image. Low and fixed exposure times are crucial in FRC, as they black-out the bulk of
incoming image data. Well-lit retroreflective tape will stand out in a mostly black image, making vision processing a
straightforward process.

2.1.7 Black Level Offset

Increasing the black level offset can significantly darken your camera stream. This should be increased to further
remove arena lights and bright spots from your image.

2.1.8 Red Balance, Blue Balance

Controls the intensity of Red and Blue color components in your image. These collecively control your Limelight’s
white balance. We recommend leaving these at their default values of

2.2 Thresholding

Thresholding is a critical component of most FRC vision tracking algorithms. It is the act of taking an image, and
throwing away any pixels that aren’t in a specific color range. The result of thresholding is generally a one-dimensional
image in which a pixel is either “on” or “off.

2.2. Thresholding 11
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2.2.1 Video Feed (Located beneath stream)

Controls which image is streamed from the mjpeg server. You should switch to the “threshold” image if you need to
tune your HSV thresholding.

2.2.2 Thresholding Wands

Wands enable users to click on Limelights’s video stream to perform automatic HSV thresholding.

• The “Eyedropper” wand centers HSV parameters around the selected pixel

• The “Add” wand adjusts HSV parameters to include the selected pixel

• The “Subtract” wand adjust HSV paramters to ignore the selected pixel

2.2.3 Hue

Describes a “pure” color. A Hue of “0” describes pure red, and a hue of 1/3 (59 on the slider) describes pure green.
Hue is useful because it doesn’t change as a pixel “brightens” or “darkens”. This is the most important parameter to
tune. If you make your hue range as small as possible, you will have little if any trouble transitioning to an actual FRC
field.

2.2.4 Saturation

Describes the extent to which a color is “pure”. Another way to think of this is how washed-out a color appears, that
is, how much “white” is in a color. Low saturation means a color is almost white, and high saturation means a color is
almost “pure”.

2.2.5 Value

Describes the darkness of a color, or how much “black” is in a color. A low value corresponds to a near-black
color. You should absolutely increase the minimum value from zero, so that black pixels are not passed through the
processing pipeline.

2.2. Thresholding 12



Limelight Documentation, Release 1.0

2.2.6 Erosion and Dilation

Erosion slightly erodes the result of an HSV threshold. This is useful if many objects are passing through a tuned HSV
threshold. Dilation slightly inflates the result of an HSV threshold. Use this to patch holes in thresholding results.

2.3 Contour Filtering

After thresholding, Limelight generates a list of contours. After that, each contour is wrapped in a bounding rectangle
an unrotated rectangle, and a “convex hull”. These are passed through a series of filters to determine the “best” contour.
If multiple contours pass through all filters, Limelight chooses the best contour using the “Sort Mode” Control.

2.3.1 Sort Mode

Controls how contours are sorted after they are passed through all other filters.

2.3.2 Target Area

Controls the range of acceptable bounding-rectangle areas, as percentages of the screen. You can increase the minimum
area to help filter-out stadium lights, and decrease the maximum value to help filter-out things like large displays near
the field.

Note: The area slider is not linearly scaled, but quarticly scaled. This is done to provide extra precision near the
lower-end of area values, where many FRC targets lie. The area of a square scales quadratically with its side length,
but x^4 scaling provides even greater precision where it is needed.

2.3.3 Target Fullness

Fullness is the percentage of “on” pixels in the chosen contour’s bounding rectangle. A solid rectangle target will have
a near-1.0 fullness, while a U-shaped target will have a low fullness.

2.3.4 Target Aspect Ratio

Aspect ratio is defined by the width of the bounding rectangle of the chosen contour divided by its height. A low
aspect ratio describes a “tall” rectangle, while a high aspect ratio describes a “wide” rectangle.

Note: The aspect ratio slider is also quadratically scaled.

2.3. Contour Filtering 13
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2.3.5 Direction Filter

Rejects contours on the basis of their orientation.

2.3.6 Smart Speckle Rejection

Rejects relatively small contours that have passed through all other filters. This is essential if a target must remain
trackable from short-range and long-range. This feature was introduced in the 2019 season to reject Limelight’s LED
reflections when robots were very close to targets.

2.3.7 Contour Simplification %

Simplifies contours to reduce the number of corners in each contour. This is useful when using the raw corner or 3D
features.

2.3.8 Target Grouping

Controls target “grouping”. Set to dual mode to look for “targets” that consist of two shapes, or tri mode to look for
targets that consist of three shapes.

2.3.9 Intersection Filter (Dual Targets Only)

Rejects groups of contours based on how they would intersect if extended to infinity.

2.4 Output

This tab controls what happens during the last stage of the vision pipeline

2.4.1 Targeting Region

Controls the point of interest of the chosen contour’s bounding rectangle. By default, the tracking parameters tx and
ty represent the offsets from your crosshair to the center of the chosen rectangle. You can use another option if a target
changes in size, or is comprised of two targets that sometimes blend together.

2.4.2 Send Raw Corners?

Set this control to “yes” to submit raw corners over network tables. Tune the number of corners submitted by adjusting
the “Contour Simplification” value in the “Contour Filtering” page.

2.4.3 Send Raw Contours?

Set this control to “yes” to submit raw contours over network tables. The top 3 passing contours will be submitted.

2.4. Output 14
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2.4.4 Crosshair Calibration

Controls the “origin” of your targeting values. Let’s say a shooter on your robot needs to be calibrated such that it
always points a bit left-of-center. You can line up your robot, click “calibrate,” and all of your targeting values will be
sent relative to your new crosshair. See the calibration page for more details!

2.5 3D

Experiment with PnP point-based pose estimation here.

2.5.1 Solve 3D

Controls whether pose estimation is enabled. You must enable high-res mode for this to work.

2.5.2 Camera Matricies (Advanced Users)

Limelight 2 960x720

cameraMatrix = cv::Matx33d(
772.53876202, 0., 479.132337442,
0., 769.052151477, 359.143001808,
0., 0., 1.0);

distortionCoefficient = std::vector<double> {
2.9684613693070039e-01, -1.4380252254747885e+00,-2.

→˓2098421479494509e-03,
-3.3894563533907176e-03, 2.5344430354806740e+00};

focalLength = 2.9272781257541; //mm

Limelight 1 960x720

cameraMatrix = cv::Matx33d(
8.8106888208290547e+02, 0., 4.8844767170376019e+02,
0., 8.7832357838726318e+02, 3.5819038625928994e+02,
0., 0., 1.);

distortionCoefficient = std::vector<double> {
1.3861168261860063e-01, -5.4784067711324946e-01,
-2.2878279907387667e-03, -3.8260257487769065e-04,
5.0520158005588123e-01 };

focalLength = 3.3385168390258093; //mm

2.5. 3D 15



CHAPTER 3

Crosshair Calibration

• Single Crosshair Mode

• Dual Crosshair Mode

Limelight’s crosshairs turn calibration into a seamless process. Rather than storing offsets in their code, teams can
line-up their robots perfectly by hand (or by joystick), and click the “calibrate” button.

Calibrating a crosshair moves the “zero” of your targeting data. This is very useful if your Limelight isn’t perfectly
centered on your robot.

3.1 Single Crosshair Mode

Line-up your robot at its ideal scoring location+rotation, and click “calibrate”. Now a tx and ty of “zero” equate to a
perfectly aligned robot. If your robot needs to be recalibrated for a new field, simply take a practice match to find the
perfect alignment for your robot, and click “calibrate” during your match.

3.2 Dual Crosshair Mode

Imagine a robot with an off-axis camera or shooter that needs to shoot gameobjects into a goal from many positions
on the field. As the robot approaches the goal, its crosshair must adjust in real-time to compensate. Dual crosshair
mode is built for this functionality. Line-up your robot at its closest scoring position+rotation, and calibrate crosshair
“A”. Line-up your robot at its farthest scoring position+rotation, and calibrate crosshair “B”. When you calibrate in
dual-crosshair mode, crosshairs also store an area value. You will notice that as your robot moves between its min and
max scoring distances, the crosshair moves between crosshair “A” and crosshair “B”. This is done by checking the
area of the target, and comparing it to the two target areas seen during calibration.
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CHAPTER 4

Using Multiple Pipelines

Limelight can store up to ten unique vision pipelines for different goals, different fields, or different robots. Change
pipelines mid-match by changing the “pipeline” value in NetworkTables.

To edit multiple pipelines, you must first check the “Ignore NetworkTables Index” checkbox in the web interface. This
will force the robot to temporarily allow you to change the pipline index through the webinterface rather than through
NetworkTables.

To download your pipelines for backups and sharing, simply click the “download” button next to your pipeline’s name.
To upload a pipeline, click the “upload” button.

Here’s an example of a robot that utilizes two pipelines:

The first pipeline is tuned to target single vertical stripes. The second pipeline is tuned to find a combo of two horizontal
stripes. The code for this robot is available in the “Aim and Range” case study.

Notice that when the robot switches pipelines, the web interface auto-loads the new pipeline.

17



CHAPTER 5

Additional Theory

• Vision Targets

• Thresholding

• Contour Filtering

• Output

5.1 Vision Targets

The FRC game designers often place reflective “vision targets” on the field in strategic locations. These vision targets
are usually made out of retro-reflective tape. Major scoring elements generally have vision targets that can be used
to automatically aim. Below you can see two examples of some of the vision targets from the 2016 and 2017 FRC
games.

18
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These retro-reflective vision targets have a very useful property: when light is shined at them, it will reflect directly
back to the light source. This is why Limelight has bright green LEDs surrounding its camera lens. By setting the
camera exposure very low while emitting a bright green light toward the target, we can aquire an image that is mostly
black with a bright green vision target. This makes the job of aquiring the target relatively easy.

Here you can see an example of the ideal of image. Notice how almost all of the detail in the image is gone due to the
low exposure setting but the retro-reflective tape stands out brightly.

5.1. Vision Targets 19
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5.2 Thresholding

Thresholding is the next critical component of most FRC vision tracking algorithms. It is the act of taking an image,
and throwing away any pixels that aren’t in a specific color range. The result of thresholding is generally a one-
dimensional image in which a pixel is either “on” or “off. Thresholding works very well on images that are captured
using the above strategy (low exposure, very dark image with a brightly illuminated vision target)

Limelight does thresholding in the HSV (Hue-Saturation-Value) colorspace. You may be used to thinking of colors
in the RGB (Red-Green-Blue) colorspace. HSV is just another way of representing color similar to the way cartesian
coordinates or polar coordinates can be used to describe positions. The reason we use the HSV colorspace is that the
Hue can be used to very tightly select the green color that Limelight’s leds output.

It is critical to adjust your thresholding settings to eliminate as much as you can from the image. You will get the best
results if you optimize each stage of your vision pipeline before moving to the next stage. The following image depicts
the difference between improper and proper thresholding:

5.2. Thresholding 20
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Sometimes things like ceiling lights or windows in an arena can be difficult to remove from the image using thresh-
olding, which brings us to the next stage.

5.3 Contour Filtering

After thresholding, Limelight’s vision pipeline generates a set of contours for the image. A contour in is a curve
surrounding a contiguous set of pixels. Sometimes things like ceiling lights, arena scoreboards, windows and other
things can make it past the thresholding step. This is where contour filtering becomes useful. The goal is to eliminate
any contours which we know are not the target we are interested in.

The first and easiest countour filter is to ignore any contours which are smaller than what our vision target looks like
from our scoring distance. Anything smaller than that size is obviously something farther away and should be ignored.
This is called area filtering.

The FRC vision targets often have some geometric property that can be exploited to help us filter contours. For
example, if the vision target has a wide aspect ratio, we can filter out any contours that are not wide:
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However, keep in mind that your camera may be looking at the target from an odd angle. This can drastically affect
the aspect ratio of its contour. Be sure to test your settings from a variety of angles to ensure that you do not filter too
aggressively and end up ignoring the vision target!

This next image target is very interesting. It is one of the best designed vision targets in FRC (in our opinion).
Limelight automatically calculates a value called the fullness of a contour. Fullness is the ratio between the pixel area
of the contour to its convex area. This particular shape has a very low fullness and you almost never see any ceiling
lights, windows, etc with such a low fullness. So you can very effectively filter out the unwanted contours if your
vision target looks like this one.
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Limelight has many options for filtering contours. You can use these options along with what you know about the
geometry properties of the particular vision target you are trying to track.

Currently, if multiple contours pass through your filtering options, the largest contour is chosen. In addition, the
pipeline prefers to “lock” onto contours using hysteresis. This is a feature that helps prevent flickering between similar
targets.

5.4 From Pixels to Angles

The end result of the vision pipeline is a pixel location of the best contour in the image. For most games, we can just
aim at the center of the contour. Sometimes it is also useful to aim at the top-center or some other point but essentially
we have a pixel coordinate for where we want to aim. In order to compute the angles to this target, we need to use a
little bit of trigonometry.

First we assume that we have a perfect “pinhole” camera. In practice this can be far from the truth but the limelight’s
camera is very close. (A fisheye lens would be far from this ideal as a counter-example.)

The limelight camera has a horizontal field of view of 54 degrees and a vertical field of view of 41 degrees. It captures
images at 320x240 resolution. We assume the center of the image is the optical azis of the camera (so the x and y
angles for that location are 0,0). Given these known values, we can use a little trigonometry to compute the angles for
any pixel in the image.

The below diagram shows an example target point which we want to compute angles for. Pixel coordinates start at the
upper left corner of the image and are positive to the right and down.

Our first step will be to convert from pixel coordinates to normalized 2D coordinates where 0,0 is the center of the
image and 1.0:

(px,py) = pixel coordinates, 0,0 is the upper-left, positive down and to the right

(nx,ny) = normalized pixel coordinates, 0,0 is the center, positive right and up

nx = (1/160) * (px - 159.5)

ny = (1/120) * (119.5 - py)
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Next we define an imaginary view plane and compute its size. For simplicity, we can choose to place this plane 1.0
unit in front of the camera location. Here is a view looking down on the camera. Our goal is to compute the view
plane width and height as those values will be used to compute the angles later:

Given a distance of 1.0 unit and a known horizontal and vertical fov, we can compute the size of the view plane
rectangle the following formulas:

vpw = 2.0*tan(horizontal_fov/2)

vph = 2.0*tan(vertical_fov/2)

Using these two values, we can now convert between normalized pixel coordinates and view plane coordinates using
a simple multiply.

x = vpw/2 * nx;

y = vph/2 * ny;

Remember that we chose our view plane to be positioned at a distance of 1.0. Now we have everything we need to
compute the angles to the target point.
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tan(ax) = x / 1

tan(ay) = y / 1

ax = atan2(1,x)

ay = atan2(1,y)
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CHAPTER 6

Complete NetworkTables API

“Best” Contour information:

Use the following code:

Java

NetworkTableInstance.getDefault().getTable("limelight").getEntry("<variablename>").
→˓getDouble(0);

LabView

C++

nt::NetworkTableInstance::GetDefault().GetTable("limelight")->GetNumber("
→˓<variablename>",0.0);

Python

NetworkTables.getTable("limelight").getNumber('<variablename>');

to retrieve this data:
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tv Whether the limelight has any valid targets (0 or 1)
tx Horizontal Offset From Crosshair To Target (LL1: -27 degrees to 27 degrees | LL2: -29.8 to 29.8

degrees)
ty Vertical Offset From Crosshair To Target (LL1: -20.5 degrees to 20.5 degrees | LL2: -24.85 to 24.85

degrees)
ta Target Area (0% of image to 100% of image)
ts Skew or rotation (-90 degrees to 0 degrees)
tl The pipeline’s latency contribution (ms) Add at least 11ms for image capture latency.
tshort Sidelength of shortest side of the fitted bounding box (pixels)
tlong Sidelength of longest side of the fitted bounding box (pixels)
thor Horizontal sidelength of the rough bounding box (0 - 320 pixels)
tvert Vertical sidelength of the rough bounding box (0 - 320 pixels)
getpipe True active pipeline index of the camera (0 .. 9)
cam-
tran

Results of a 3D position solution, 6 numbers: Translation (x,y,y) Rotation(pitch,yaw,roll)

Camera Controls:

Use the following code:

Java

NetworkTableInstance.getDefault().getTable("limelight").getEntry("<variablename>").
→˓setNumber(<value>);

LabView

C++

nt::NetworkTableInstance::GetDefault().GetTable("limelight")->PutNumber("
→˓<variablename>",<value>);

Python

NetworkTables.getTable("limelight").putNumber('<variablename>',<value>);

to set this data:

ledMode Sets limelight’s LED state
0 use the LED Mode set in the current pipeline
1 force off
2 force blink
3 force on
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camMode Sets limelight’s operation mode
0 Vision processor
1 Driver Camera (Increases exposure, disables vision processing)

pipeline Sets limelight’s current pipeline
0 .. 9 Select pipeline 0..9

stream Sets limelight’s streaming mode
0 Standard - Side-by-side streams if a webcam is attached to Limelight
1 PiP Main - The secondary camera stream is placed in the lower-right corner of the primary camera stream
2 PiP Secondary - The primary camera stream is placed in the lower-right corner of the secondary camera

stream

snapshot Allows users to take snapshots during a match
0 Stop taking snapshots
1 Take two snapshots per second

Corners:

Enable “send contours” in the “Output” tab to stream corner coordinates:

tcornx Number array of corner x-coordinates
tcorny Number array of corner y-coordinates

6.1 Advanced Usage with Raw Contours

Raw Targets:

Limelight posts three raw contours to NetworkTables that are not influenced by your grouping mode. That is, they are
filtered with your pipeline parameters, but never grouped. X and Y are returned in normalized screen space (-1 to 1)
rather than degrees.

tx0 Raw Screenspace X
ty0 Raw Screenspace Y
ta0 Area (0% of image to 100% of image)
ts0 Skew or rotation (-90 degrees to 0 degrees)
tx1 Raw Screenspace X
ty1 Raw Screenspace Y
ta1 Area (0% of image to 100% of image)
ts1 Skew or rotation (-90 degrees to 0 degrees)
tx2 Raw Screenspace X
ty2 Raw Screenspace Y
ta2 Area (0% of image to 100% of image)
ts2 Skew or rotation (-90 degrees to 0 degrees)

Raw Crosshairs:
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If you are using raw targeting data, you can still utilize your calibrated crosshairs:

cx0 Crosshair A X in normalized screen space
cy0 Crosshair A Y in normalized screen space
cx1 Crosshair B X in normalized screen space
cy1 Crosshair B Y in normalized screen space
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CHAPTER 7

Case Study: Estimating Distance

• Using a Fixed Angle Camera

• Using Area to Estimate Distance

7.1 Using a Fixed Angle Camera

If your vision tracking camera is mounted on your robot in such a way that its angle between the ground plane and its
line of sight does not change then you can use this technique to very accurately calculate the distance to a target. You
can then use this distance value to either drive your robot forward and back to get into the perfect range or you can use
it to adjust the power of a shooting mechanism.

See the below diagram. In this situation all of the variables are known: the height of the target (h2) is known because
it is a property of the field. The height of your camera above the floor (h1) is known and its mounting angle is known
(a1). The limelight (or your vision system) can tell you the y angle to the target (a2).
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We can solve for d using the following equation:

tan(a1+a2) = (h2-h1) / d

d = (h2-h1) / tan(a1+a2)

When using this technique it is important to choose the mounting angle of your camera carefully. You want to be able
to see the target both when you’re too close and too far away. You also do not want this angle to change so mount it
securely since you’ll have to adjust all of your numbers if it moves.

If you are having trouble figuring out what the angle a1 is, you can also use the above equation to solve for a1. Just
put your robot at a known distance (measuring from the lens of your camera) and solve the same equation for a1.

In the case where your target is at nearly the same height as your camera, this technique is not useful.

7.2 Using Area to Estimate Distance

Another simple way to estimate distance is to use the area of the contour you are tracking. This is a very simple
method to implement but it does not give you extremely accurate results. All you do is point your vision camera at the
target from a known distance and take note of the area of the blob. Make sure you’re using an accurate representation
of the real field’s vision target and make sure you’re pointing at it from your desired shooting location. You can then
do this from a few different distances and make a table out of these values. In 2016 we used this method to adjust the
aim of our 2-axis turret based on how far from the goal we were.
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CHAPTER 8

Case Study: Aiming Using Vision

1. You can accurately and quickly aim your robot using only a limelight and your drivetrain.

2. We added the limelight to a robot, implemented the code and tuned it in less than 1hr.

Using high-framerate vision tracking, it is now possible to use the vision pipeline directly as the “sensor” in a PID
control loop to guide your robot or turret. In order to test this idea we added a limelight to our 2017 FRC robotand
made it aim at vision targets using nothing more than the drivetrain and the networks table data being reported by the
limelight.

In this example, our test candidate was a 2017 FRC robot which uses a 6-wheel drivetrain with colson wheels. Here is
a picture of us adding a limelight onto the robot in order to do this test.
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Next we added some code to the robot which would run whenever the driver holds a button on the joystick. This
robot used “tank” style driving so the OperatorControl function was generating a ‘left_command’ value and a
‘right_command’ value to control the left and right sides of the drivetrain. After the normal control code, we added a
block of code like this:

float Kp = -0.1f; // Proportional control constant

std::shared_ptr<NetworkTable> table = NetworkTable::GetTable("limelight");
float tx = table->GetNumber("tx");

if (joystick->GetRawButton(9))
{

float heading_error = tx;
steering_adjust = Kp * tx;

left_command+=steering_adjust;
right_command-=steering_adjust;

}

Right off the bat, this mostly worked. The robot turns in the direction of the target automatically whenever you are
holding the button. If you move the target around, the robot turns to follow the target. However, using the live video
feed on the dashboard, we could see that there was one big problem: The robot wasn’t always making it all the way to
perfectly align with the target. In some games with small targets, (like 2016 and 2017) this wouldn’t be good enough.

What we have implemented so far is a simple proportional control loop. We calculated the error in heading and
multiplied that by a constant, thus making a motor command which is proportional to the error. As the error goes to
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zero, our command will go to zero. The problem is that there is a lot of friction involved when the robot tries to turn.
Very small commands will not turn the robot at all. At small angles, the command can become too small to actually
move the robot. You might find that your robot reaches its target well when you start out with a large targeting error
but it just can’t aim at all if you start out really close.

There are a few ways to solve this problem but here is a really simple solution. We used a concept the “minimum
command”. If the error is bigger than some threshhold, just add a constant to your motor command which roughly
represents the minimum amount of power needed for the robot to actually move (you actually want to use a little bit
less than this). The new code looks like this:

float Kp = -0.1f;
float min_command = 0.05f;

std::shared_ptr<NetworkTable> table = NetworkTable::GetTable("limelight");
float tx = table->GetNumber("tx");

if (joystick->GetRawButton(9))
{

float heading_error = -tx;
float steering_adjust = 0.0f;
if (tx > 1.0)
{

steering_adjust = Kp*heading_error - min_command;
}
else if (tx < 1.0)
{

steering_adjust = Kp*heading_error + min_command;
}
left_command += steering_adjust;
right_command -= steering_adjust;

}

Beware, if you set Kp or min_command too high, your robot can become unstable and can oscillate back and forth as
it overshoots the target:

After some tuning on Kp and min_command should get your robot aiming directly at the target very accurately and
quickly.
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CHAPTER 9

Case Study: Seeking

1. Use a seeking behavior to find a target that is not initially visible to the camera.

Implementing a seeking behavior can be useful in a few situtations. In some games, the goal you are trying to score
into may not be in a predictable location so you can’t rely on dead-reconing autonomous code to get “close enough”.
In 2009 for example, the goals were attached to the opponents robots which also driving around. Another reason you
might want to implement seeking is if your robot’s drivetrain is not reliable/repeatable enough to put you in exactly the
location you want. Sometimes swerve drives or omni-directional drives can have trouble driving to presice locations
(this is not a knock on swerve or omni-directional drivetrains; it is just more challenging to get them to drive to
repeatable locations). Some games have even allowed robot-robot interaction during autonomous mode. In 2006 we
often engaged in autonomous duels where the defense robots would try to knock the offense robots out of scoring
position. In this case you can’t be sure of anything! Hopefully this gets you thinking about some ways that having
your robot automatically seek for a goal that it can’t initially see might be useful.

Luckily, adding seeking logic to your robot is very easy. To implement seeking, you simply have your robot scan for
a target and once it finds it, start running the aiming code. We will use the ‘tv’ or ‘target valid’ value reported by
limelight to know if we see a target or not.

std::shared_ptr<NetworkTable> table = NetworkTable::GetTable("limelight");
float tv = table->GetNumber("tv");
float tx = table->GetNumber("tx");

float steering_adjust = 0.0f;
if (tv == 0.0f)
{

// We don't see the target, seek for the target by spinning in place at a
→˓safe speed.

steering_adjust = 0.3f;
}
else
{

// We do see the target, execute aiming code
float heading_error = tx;
steering_adjust = Kp * tx;

}

(continues on next page)
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(continued from previous page)

left_command+=steering_adjust;
right_command-=steering_adjust;

Note that if your aiming code includes correcting the distance to the target, the robot behavior will be seeking followed
by driving to the shooting distance as it aligns with the target. All of this can be achieved with the very simple code
shown above.
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CHAPTER 10

Case Study: Getting in Range

1. Have your robot automatically drive to a desired distance from the target.

2. A very simple trick using a calibrated cross-hair.

FRC robots often need to be positioned a specific distance from a scoring goal in order for their scoring mechanism to
work well. You can use a simple proportional control loop along with limelight’s calibrated cross-hair to very easily
have your robot drive to a specific distance from the goal.

For this example, you should make sure that your robot is aimed at the goal. Later we will combine aiming and
distance adjust into one function but for this example we are focusing only on the code that drives the robot to the
correct distance.

Similar to the aiming example, here we show a function which can be run in your robot’s update loop.

float KpDistance = -0.1f; // Proportional control constant for distance
float current_distance = Estimate_Distance(); // see the 'Case Study: Estimating
→˓Distance'

if (joystick->GetRawButton(9))
{

float distance_error = desired_distance - current_distance;
driving_adjust = KpDistance * distance_error;

left_command += distance_adjust;
right_command += distance_adjust;

}

With some tuning of the KpDistance setting, your robot should very quickly and accurately drive to the desired
distance. Compared to aiming, driving to the correct distance is usually easier because most robots drive forward and
backward much easier than they turn in place.

Next we’ll describe a simple trick to make driving to the correct distance even easier. Instead of actually calculating
the distance, you can use the limelight cross-hair. Just position your robot at your idea distance from the target and
calibrate the y-position of the cross-hair. Now your y-angle will report as 0.0 when your robot is at the corect distance.
Using this trick, you don’t ever have to actually calculate the actual distance and your code can look something like
this:
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float KpDistance = -0.1f;

std::shared_ptr<NetworkTable> table = NetworkTable::GetTable("limelight");
float distance_error = table->GetNumber("ty");

if (joystick->GetRawButton(9))
{

driving_adjust = KpDistance * distance_error;

left_command += distance_adjust;
right_command += distance_adjust;

}

If you need to change the shooting distance, just move your robot to the new distance and re-calibrate the limelight
crosshair.

Here is an example of a robot using the above idea. Note how it backs up to the correct range automatically when the
driver stops driving and presses the “aim” button:
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Case Study: Aiming and Range at the same time.

1. Put aiming and range adjustment into one function.

This example uses code from the aiming and range adjustment examples and puts everything together into one simple
function. Using this, you can get your robot “close” and then use code to automatically aim and drive to the correct
distance.

float KpAim = -0.1f;
float KpDistance = -0.1f;
float min_aim_command = 0.05f;

std::shared_ptr<NetworkTable> table = NetworkTable::GetTable("limelight");
float tx = table->GetNumber("tx");
float ty = table->GetNumber("ty");

if (joystick->GetRawButton(9))
{

float heading_error = -tx;
float distance_error = -ty;
float steering_adjust = 0.0f;

if (tx > 1.0)
{

steering_adjust = KpAim*heading_error - min_aim_command;
}
else if (tx < 1.0)
{

steering_adjust = KpAim*heading_error + min_aim_command;
}

float distance_adjust = KpDistance * distance_error;

left_command += steering_adjust + distance_adjust;

(continues on next page)
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right_command -= steering_adjust + distance_adjust;
}
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CHAPTER 12

Case Study: 2017 Fuel Robot

1. Entire c++ robot program which implements 2017 fuel scoring.

In this example, we present a complete robot program which implements the 2017 boiler goal. We tested this program
on the 987 steamworks robot and were able to easily score fuel in the boiler. For this example we aim and move into
range using the robot’s drivetrain. One thing that was immediately apparent to us is that limelight let us implement
this feature in a tiny fraction of the amount of code and time compared to our real 2017 robot.

There are also a couple of other features in the code below such as the ability to blink the LEDs and dynamically
toggle between multiple vision pipelines. This example also shows how to use a Talon SRX speed controller along
with a magnetic encoder to control the RPM of the shooter wheel.

#include <iostream>
#include <string>

#include <Drive/DifferentialDrive.h>
#include <Joystick.h>
#include <SampleRobot.h>
#include <SmartDashboard/SendableChooser.h>
#include <SmartDashboard/SmartDashboard.h>
#include <Spark.h>
#include <Victor.h>
#include <Timer.h>
#include "ctre/phoenix/MotorControl/CAN/TalonSRX.h"

//
#define Vic_Drive_Left_1 0
#define Vic_Drive_Left_2 1
#define Vic_Drive_Right_1 2
#define Vic_Drive_Right_2 3

#define Tal_Shooter_Wheel 21
#define Tal_Shooter_Wheel_2 2
#define Tal_Intake 3
#define Tal_Uptake 9

(continues on next page)
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class Robot : public frc::SampleRobot
{
public:

Robot() :
LeftDrive(Vic_Drive_Left_1),
RightDrive(Vic_Drive_Right_1),
LeftDrive2(Vic_Drive_Left_2),
RightDrive2(Vic_Drive_Right_2),
Shooter(Tal_Shooter_Wheel),
Shooter_2(Tal_Shooter_Wheel_2),
Intake(Tal_Intake),
Uptake(Tal_Uptake)

{
// This code sets up two Talons to work together and implement PID RPM control
Shooter.SetControlMode(CTRE::MotorControl::ControlMode::kSpeed);
Shooter_2.SetControlMode(CTRE::MotorControl::ControlMode::kFollower);
Shooter_2.Set(Tal_Shooter_Wheel);
Shooter.SetClosedLoopOutputDirection(false);
Shooter.

→˓SetStatusFrameRateMs(CTRE::MotorControl::CAN::TalonSRX::StatusFrameRateAnalogTempVbat,
→˓10);

Shooter.SetFeedbackDevice(CTRE::MotorControl::CAN::TalonSRX::CtreMagEncoder_
→˓Relative);

SetShooterConstants(.0002f, .00009f, .0000f, .000006f); // P,I,D,F constants
→˓for the shooter wheel

Shooter.SetAllowableClosedLoopErr(10);
Shooter.ConfigNominalOutputVoltage(+0.f,-0.f);
Shooter.ConfigPeakOutputVoltage(+12.f,-12.f);
Shooter.SelectProfileSlot(0);
Shooter.SetSensorDirection(true);
Shooter.SetVoltageRampRate(100);
Shooter.SetIzone(300);
Shooter_2.SetVoltageRampRate(100);

}

void RobotInit()
{
}

void Autonomous()
{
}

/*
* Operator Control

*/
void OperatorControl() override
{

while (IsOperatorControl() && IsEnabled())
{

// Read the joysticks!
float left_command = m_stickLeft.GetY();
float right_command = m_stickRight.GetY();

// Get limelight table for reading tracking data
(continues on next page)
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std::shared_ptr<NetworkTable> table = NetworkTable::GetTable(
→˓"limelight");

float KpAim = 0.045;
float KpDist = 0.0f; //0.09;
float AimMinCmd = 0.095f;

float targetX = table->GetNumber("tx", 0);
float targetY = table->GetNumber("ty", 0);
float targetA = table->GetNumber("ta", 0);

// Aim error and distance error based on calibrated limelight cross-
→˓hair

float aim_error = targetX;
float dist_error = targetY;

// Steering adjust with a 0.2 degree deadband (close enough at 0.2deg)
float steeringAdjust = KpAim*aim_error;
if (targetX > .2f) steeringAdjust += AimMinCmd;
else if (targetX < -.2f) steeringAdjust -= AimMinCmd;

// Distance adjust, drive to the correct distance from the goal
float drivingAdjust = KpDist*dist_error;
bool doTarget = false;

if(m_stickLeft.GetRawButton(3)) // Aim using pipeline 0
{

doTarget = true;
table->PutNumber("pipeline", 0);

}
else if (m_stickLeft.GetRawButton(2)) // Aim using pipeline 1
{

doTarget = true;
table->PutNumber("pipeline", 1);

}

if(doTarget) // If auto-aiming, adjust
→˓drive and steer

{
ShooterSetRPM(3300);
left_command += drivingAdjust - steeringAdjust;
right_command += drivingAdjust + steeringAdjust;

}
else
{

ShooterOff();
}

// Tank drive, send left and right drivetrain motor commands
StandardTank(left_command,right_command);

if(m_stickRight.GetRawButton(3)) // Suck in and shoot balls
{

IntakeIn();
UptakeUp();

}
else if(m_stickRight.GetRawButton(2)) // Spit out balls

(continues on next page)

43



Limelight Documentation, Release 1.0

(continued from previous page)

{
IntakeIn();
UptakeDown();

}
else // Leave the balls alone!
{

IntakeOff();
UptakeOff();

}
if(m_stickLeft.GetRawButton(5)) // Joystick Button 5 = Flash

→˓the LEDs
{

table->PutNumber("ledMode", 2); //flash the lights
}
else
{

table->PutNumber("ledMode", 0); //turn the lights on
}

// wait for a motor update time
frc::Wait(0.005);

}
}

/*
* Runs during test mode

*/
void Test() override {}

void StandardTank(float left, float right)
{

LeftDrive.Set(-left);
LeftDrive2.Set(-left);
RightDrive.Set(right);
RightDrive2.Set(right);

}

//
// Shooter Functions - uses talon PID to control shooter wheel RPM
// Set the P,I,D,F constants in the Talon, these values depend heavily on your
→˓mechanism
//
void SetShooterConstants(float p,float i,float d,float f)
{

p *= 1024.f;
i *= 1024.f;
d *= 1024.f;
f *= 1024.f;

Shooter.SetP(p);
Shooter.SetI(i);
Shooter.SetD(d);
Shooter.SetF(f);

}

//
(continues on next page)
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// Tell the talons our desired shooter wheel RPM
//
void ShooterSetRPM(float desrpm)
{

Shooter.SetControlMode(CTRE::MotorControl::ControlMode::kSpeed);
Shooter_2.SetControlMode(CTRE::MotorControl::ControlMode::kFollower);
Shooter_2.Set(Tal_Shooter_Wheel);
Shooter.Set(desrpm);

}

//
// Just set the power -1..+1, not currently using this now that RPM control is set up
//
void ShooterSetPower(float power)
{

Shooter.SetControlMode(CTRE::MotorControl::ControlMode::kPercentVbus);
Shooter_2.SetControlMode(CTRE::MotorControl::ControlMode::kPercentVbus);
Shooter_2.Set(power);
Shooter.Set(power);

}

//
// Turn off the shooter wheel
//
void ShooterOff()
{

Shooter.SetControlMode(CTRE::MotorControl::ControlMode::kPercentVbus);
Shooter_2.SetControlMode(CTRE::MotorControl::ControlMode::kPercentVbus);
Shooter.Set(0.0f);
Shooter_2.Set(0.0f);

}

//
// Intake Functions
//
void IntakeIn()
{

Intake.Set(-.8f);
}
void IntakeOut()
{

Intake.Set(.8f);
}
void IntakeShooting()
{

Intake.Set(-1.0f);
}

void IntakeOff()
{

Intake.Set(0);
}

//
// Uptake Functions
//
void UptakeUp()

(continues on next page)

45



Limelight Documentation, Release 1.0

(continued from previous page)

{
Uptake.Set(-1.0f);

}
void UptakeDown()
{

Uptake.Set(1.0f);
}
void UptakeOff()
{

Uptake.Set(0);
}

private:

// Robot drive system
frc::Victor LeftDrive;
frc::Victor RightDrive;
frc::Victor LeftDrive2;
frc::Victor RightDrive2;

// shooter wheel
CTRE::MotorControl::CAN::TalonSRX Shooter;
CTRE::MotorControl::CAN::TalonSRX Shooter_2;
CTRE::MotorControl::CAN::TalonSRX Intake;
CTRE::MotorControl::CAN::TalonSRX Uptake;

// Joystick inputs
frc::Joystick m_stickLeft{0};
frc::Joystick m_stickRight{1};

};

START_ROBOT_CLASS(Robot)
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Case Study: DEEP SPACE 2019 Examples

1. Example programs in C++, Java and Labview for using a limelight camera to drive up to a goal in Deep Space.

The 2019 FRC game Deep Space has vision targets above many of the goals that you need to drive up to. Below you
can find complete example programs in C++, Java, and Labview which implement a simple method for automatically
driving a differential drive robot to a goal in Deep Space.

These are very simple programs and only meant to show the concept of using limelight tracking data to control your
robot. In each program, you can drive your robot with a gamepad. If you hold the ‘A’ button down, and the limelight
sees a valid target (depending on the settings in your pipeline) then the robot will automatically drive towards the
target. Be careful to tune the various constants in the code for your particular robot. Some robots turn or drive more
easily than others so tuning the proportional control constants must be done on a case-by-case basis. Also make sure
the robot drives correctly using the gamepad controller before enabling the limelight seeking behavior. You may need
to invert some of your motor controllers.

Java

package frc.robot;

import edu.wpi.first.wpilibj.TimedRobot;
import edu.wpi.first.wpilibj.smartdashboard.SendableChooser;
import edu.wpi.first.wpilibj.smartdashboard.SmartDashboard;
import edu.wpi.first.wpilibj.VictorSP;
import edu.wpi.first.wpilibj.SpeedControllerGroup;
import edu.wpi.first.wpilibj.XboxController;
import edu.wpi.first.wpilibj.GenericHID.Hand;
import edu.wpi.first.wpilibj.drive.DifferentialDrive;
import edu.wpi.first.networktables.*;

/**
* The VM is configured to automatically run this class, and to call the

* functions corresponding to each mode, as described in the TimedRobot

* documentation. If you change the name of this class or the package after

* creating this project, you must also update the build.gradle file in the

* project.

*/
(continues on next page)
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public class Robot extends TimedRobot {

private static final String kDefaultAuto = "Default";
private static final String kCustomAuto = "My Auto";
private String m_autoSelected;
private final SendableChooser<String> m_chooser = new SendableChooser<>();

private VictorSP m_Left0 = new VictorSP(0);
private VictorSP m_Left1 = new VictorSP(1);
private VictorSP m_Right0 = new VictorSP(2);
private VictorSP m_Right1 = new VictorSP(3);
private SpeedControllerGroup m_LeftMotors = new SpeedControllerGroup(m_Left0,m_

→˓Left1);
private SpeedControllerGroup m_RightMotors = new SpeedControllerGroup(m_Right0,m_

→˓Right1);
private DifferentialDrive m_Drive = new DifferentialDrive(m_LeftMotors,m_

→˓RightMotors);

private XboxController m_Controller = new XboxController(0);

private boolean m_LimelightHasValidTarget = false;
private double m_LimelightDriveCommand = 0.0;
private double m_LimelightSteerCommand = 0.0;

/**
* This function is run when the robot is first started up and should be

* used for any initialization code.

*/
@Override
public void robotInit() {

m_chooser.setDefaultOption("Default Auto", kDefaultAuto);
m_chooser.addOption("My Auto", kCustomAuto);
SmartDashboard.putData("Auto choices", m_chooser);

}

/**
* This function is called every robot packet, no matter the mode. Use

* this for items like diagnostics that you want ran during disabled,

* autonomous, teleoperated and test.

*
* <p>This runs after the mode specific periodic functions, but before

* LiveWindow and SmartDashboard integrated updating.

*/
@Override
public void robotPeriodic() {
}

/**
* This autonomous (along with the chooser code above) shows how to select

* between different autonomous modes using the dashboard. The sendable

* chooser code works with the Java SmartDashboard. If you prefer the

* LabVIEW Dashboard, remove all of the chooser code and uncomment the

* getString line to get the auto name from the text box below the Gyro

*
* <p>You can add additional auto modes by adding additional comparisons to

* the switch structure below with additional strings. If using the

* SendableChooser make sure to add them to the chooser code above as well.
(continues on next page)
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*/
@Override
public void autonomousInit() {

m_autoSelected = m_chooser.getSelected();
}

/**
* This function is called periodically during autonomous.

*/
@Override
public void autonomousPeriodic() {
}

/**
* This function is called periodically during operator control.

*/
@Override
public void teleopPeriodic() {

Update_Limelight_Tracking();

double steer = m_Controller.getX(Hand.kRight);
double drive = -m_Controller.getY(Hand.kLeft);
boolean auto = m_Controller.getAButton();

steer *= 0.70;
drive *= 0.70;

if (auto)
{

if (m_LimelightHasValidTarget)
{

m_Drive.arcadeDrive(m_LimelightDriveCommand,m_LimelightSteerCommand);
}
else
{

m_Drive.arcadeDrive(0.0,0.0);
}

}
else
{

m_Drive.arcadeDrive(drive,steer);
}

}

@Override
public void testPeriodic() {
}

/**
* This function implements a simple method of generating driving and steering

→˓commands

* based on the tracking data from a limelight camera.

*/
public void Update_Limelight_Tracking()
{

// These numbers must be tuned for your Robot! Be careful!
(continues on next page)
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final double STEER_K = 0.03; // how hard to turn toward
→˓the target

final double DRIVE_K = 0.26; // how hard to drive fwd
→˓toward the target

final double DESIRED_TARGET_AREA = 13.0; // Area of the target when
→˓the robot reaches the wall

final double MAX_DRIVE = 0.7; // Simple speed limit so we
→˓don't drive too fast

double tv = NetworkTableInstance.getDefault().getTable("limelight").getEntry(
→˓"tv").getDouble(0);

double tx = NetworkTableInstance.getDefault().getTable("limelight").getEntry(
→˓"tx").getDouble(0);

double ty = NetworkTableInstance.getDefault().getTable("limelight").getEntry(
→˓"ty").getDouble(0);

double ta = NetworkTableInstance.getDefault().getTable("limelight").getEntry(
→˓"ta").getDouble(0);

if (tv < 1.0)
{
m_LimelightHasValidTarget = false;
m_LimelightDriveCommand = 0.0;
m_LimelightSteerCommand = 0.0;
return;

}

m_LimelightHasValidTarget = true;

// Start with proportional steering
double steer_cmd = tx * STEER_K;
m_LimelightSteerCommand = steer_cmd;

// try to drive forward until the target area reaches our desired area
double drive_cmd = (DESIRED_TARGET_AREA - ta) * DRIVE_K;

// don't let the robot drive too fast into the goal
if (drive_cmd > MAX_DRIVE)
{
drive_cmd = MAX_DRIVE;

}
m_LimelightDriveCommand = drive_cmd;

}
}

C++ Header

#pragma once

#include <string>

#include <frc/TimedRobot.h>
#include <frc/smartdashboard/SendableChooser.h>
#include <frc/VictorSP.h>
#include <frc/SpeedControllerGroup.h>
#include <frc/XboxController.h>
#include <frc/drive/DifferentialDrive.h>

(continues on next page)
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class Robot : public frc::TimedRobot {
public:
Robot();

void RobotInit() override;
void RobotPeriodic() override;
void AutonomousInit() override;
void AutonomousPeriodic() override;
void TeleopInit() override;
void TeleopPeriodic() override;
void TestPeriodic() override;

void Update_Limelight_Tracking();

private:
frc::SendableChooser<std::string> m_chooser;
const std::string kAutoNameDefault = "Default";
const std::string kAutoNameCustom = "My Auto";
std::string m_autoSelected;

frc::VictorSP m_Left0;
frc::VictorSP m_Left1;
frc::VictorSP m_Right0;
frc::VictorSP m_Right1;

frc::SpeedControllerGroup m_LeftMotors { m_Left0,m_Left1 };
frc::SpeedControllerGroup m_RightMotors { m_Right0,m_Right1 };
frc::DifferentialDrive m_Drive{ m_LeftMotors, m_RightMotors };
frc::XboxController m_Controller;

bool m_LimelightHasTarget;
double m_LimelightTurnCmd;
double m_LimelightDriveCmd;

};

C++ Source

#include "Robot.h"
#include <iostream>
#include <frc/smartdashboard/SmartDashboard.h>
#include <networktables/NetworkTable.h>
#include <networktables/NetworkTableInstance.h>

double clamp(double in,double minval,double maxval)
{

if (in > maxval) return maxval;
if (in < minval) return minval;
return in;

}

Robot::Robot() :
m_Left0(0),
m_Left1(1),
m_Right0(2),

(continues on next page)
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m_Right1(3),
m_Controller(0)

{
m_LeftMotors.SetInverted(false);
m_RightMotors.SetInverted(false);

}

void Robot::RobotInit() {
m_chooser.SetDefaultOption(kAutoNameDefault, kAutoNameDefault);
m_chooser.AddOption(kAutoNameCustom, kAutoNameCustom);
frc::SmartDashboard::PutData("Auto Modes", &m_chooser);

}

void Robot::RobotPeriodic() {}

void Robot::AutonomousInit() {}

void Robot::AutonomousPeriodic() {}

void Robot::TeleopInit() {}

void Robot::TeleopPeriodic()
{

Update_Limelight_Tracking();

bool do_limelight = m_Controller.GetAButton();
if (do_limelight)
{

if (m_LimelightHasTarget)
{
m_Drive.ArcadeDrive(m_LimelightDriveCmd,m_LimelightTurnCmd);

}
else
{
m_Drive.ArcadeDrive(0.0,0.0);

}
}
else
{

// Tank Drive
//double left = -m_Controller.GetY(frc::GenericHID::JoystickHand::kLeftHand);
//double right = -m_Controller.

→˓GetY(frc::GenericHID::JoystickHand::kRightHand);
//m_Drive.TankDrive(left,right);

// Arcade Drive
double fwd = -m_Controller.GetY(frc::GenericHID::JoystickHand::kLeftHand);
double turn = m_Controller.GetX(frc::GenericHID::JoystickHand::kRightHand);
fwd *= 0.7f;
turn *= 0.7f;
m_Drive.ArcadeDrive(fwd,turn);

}
}

void Robot::TestPeriodic() {}

(continues on next page)
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void Robot::Update_Limelight_Tracking()
{

// Proportional Steering Constant:
// If your robot doesn't turn fast enough toward the target, make this number bigger
// If your robot oscillates (swings back and forth past the target) make this

→˓smaller
const double STEER_K = 0.05;

// Proportional Drive constant: bigger = faster drive
const double DRIVE_K = 0.26;

// Area of the target when your robot has reached the goal
const double DESIRED_TARGET_AREA = 13.0;
const double MAX_DRIVE = 0.65;
const double MAX_STEER = 1.0f;

std::shared_ptr<NetworkTable> table = nt::NetworkTableInstance::GetDefault().
→˓GetTable("limelight");
double tx = table->GetNumber("tx",0.0);
double ty = table->GetNumber("ty",0.0);
double ta = table->GetNumber("ta",0.0);
double tv = table->GetNumber("tv",0.0);

if (tv < 1.0)
{

m_LimelightHasTarget = false;
m_LimelightDriveCmd = 0.0;
m_LimelightTurnCmd = 0.0;

}
else
{

m_LimelightHasTarget = true;

// Proportional steering
m_LimelightTurnCmd = tx*STEER_K;
m_LimelightTurnCmd = clamp(m_LimelightTurnCmd,-MAX_STEER,MAX_STEER);

// drive forward until the target area reaches our desired area
m_LimelightDriveCmd = (DESIRED_TARGET_AREA - ta) * DRIVE_K;
m_LimelightDriveCmd = clamp(m_LimelightDriveCmd,-MAX_DRIVE,MAX_DRIVE);

}
}

#ifndef RUNNING_FRC_TESTS
int main() { return frc::StartRobot<Robot>(); }
#endif

LabView

Here is a block diagram for a LabView VI which reads tracking data from a Limelight and generates drive and steer
commands. This image is a “LabView Snippet”. Just save the image file to your computer and then drag it into a
labview VI and the block diagram will be reproduced.
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You can also download the entire labview source code from this link:

<https://www.mediafire.com/file/f35w3wllbmj9yt7/DeepSpaceLabviewExample.zip/file/>‘_
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CHAPTER 14

Using Grip to create Custom OpenCV Vision Pipelines

1. You can use GRIP to grapically design custom vision pipelines.

2. Your custom vision pipeline can be loaded into a limelight and run in hardware.

Grip is a program developed by WPI for developing vision pipelines. We have added a new export option to grip
which allows you to export your custom vision pipeline and run it on a limelight camera with no extra programming
needed. Carefully designed Grip pipelines can run at the full 90fps framerate of the limelight camera.

The first step in using GRIP is to download our build of Grip. It can be downloaded from our downloads page. When
you run GRIP, you should see a screen like this:
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You can learn more about GRIP on this web page: https://wpilib.screenstepslive.com/s/currentCS/m/vision/l/
463566-introduction-to-grip

14.1 Accessing the Video Stream wthin GRIP

Limelight has an additional video stream on port 5802 which can be accessed primarily for use with GRIP or other
applications like it. This video stream is uncompressed (or very lightly compressed) and has no cross-hair or other
overlays drawn on the image. It is important to use this video stream for developing your GRIP pipeline because the
normal Limelight video feed is optimized for very low bandwidth and latency which causes the image to be relatively
low quality and can have significant compression artefacts. So to get your grip pipeline started, add an IP Camera
input which uses the limelight as its input:
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14.2 How Limelight Handles Inputs to the Pipeline

It is important to understand how your limelight camera interfaces with the inputs to your vision pipeline. Once your
pipeline is loaded into the limelight camera, its inputs will be scanned. The first input is always assumed to be the
video feed from the camera so it is important that you structure your pipeline in this way. Any additional inputs to the
pipeline will recieve upload buttons in the limelight UI which will allow you to upload addtional images or data files
as needed by your pipeline. For now it is important to realize that the video stream should be the first input in your
Grip Pipeline.

14.3 Generating output for the Limelight to use

When your grip pipeline is loaded onto the limelight, it will also be scanned for output data in the form of contours,
blobs, or rectangles. If any of these outputs are found, the last one in the pipeline will be used as the ‘results’ of
your vision pipeline. The outputs of your pipeline will be passed through the built-in contour filtering system on the
limelight. If you want to do your own contour filtering within your GRIP pipeline, just set the limelight options to
essentially accept any contour. In the example shown below, the output of the block highlighted in red would be passed
on to the limelight targetting system. Notice that this example pipline produces contours at an intermediate step and
then filters them. Only the final set of contours (or blobs or rectangles) will be passed on to the limelight targetting
system.
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14.4 Code Generation for Limelight

When you are ready to try running your pipeline in hardware on the limelight, it is time to use the code-generation
function of GRIP. We have added a new “Limelight” code generation target to the GRIP application. Using this option
will produce a <pipeline>.ll file which can be loaded into the limelight camera.
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CHAPTER 15

Running GRIP Pipelines on Limelight

1. Upload your custom GRIP pipeline into a limelight pipeline.

2. Upload any additional inputs to your pipeline.

3. Observe the behavior of your GRIP pipeline.

Once you have used GRIP to design a custom vision pipeline and exported your pipeline to a .LL file, it is time to run
it on the limelight camera hardware. The first step is to select which limelight pipeline you’d like to load your grip
pipeline into. In order to do this, you use the UI at the top of the limelight interface to select a pipeline. Normally your
robot (through network-tables) controls the currently active pipeline. Our first step is to disable that functionality so
that we can select the pipeline to edit:

Next, change the currently active pipeline using the dropdown box highlighted below.

Next use the ‘Upload’ button to load your .LL file into this limelight pipeline.

And finally, change the pipeline mode from “LimeLight Standard” to “GRIP”.
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Once you have loaded a Grip pipeline, the UI changes slightly. In place of the ‘Thresholding’ tab, you will have a
‘GRIP’ tab. If your GRIP pipeline uses more than just the video feed as an input, you will have a list of additional
inputs as shown below with upload buttons for uploading images or other data into them.

In addition, the video feed will have new options for displaying any intermediate images generated by your GRIP
pipeline.
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When you are using a GRIP pipeline, the settings on the Input, ContourFiltering, and Output tabs are still fully
functional. If you would prefer to do your contour filtering within GRIP, you can simply “open up” all of the limelight
contour filtering options to allow all contours to pass through.
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CHAPTER 16

Best Practices

16.1 Before An Event

• Download and backup all pipelines to your programming laptop.

• Download a copy of the latest Limelight image to your programming laptop.

• Record a list of your pipelines and their indicies.

– 1 - Dual Target Low

– 2 - Dual Target High Cargo

• Add strain reliefs to all power and ethernet cables going to your LL.

• Consider hot-gluing all connections.

16.2 During Event Calibration

• Roll your robot to each target on the field.

– Make sure your thresholding is working properly. Switch to the “threshold” view during this process
(located under the image stream).

– Roll your robot close to the target, and far away from the target. Ensure crosshairs are calibrated
properly.

– While far away from the target, rotate your robot left and right ~ 30 degrees to ensure that other targets
will not be erroneously tracked.

– See the tuning section below for more tuning tips.

– Ensure no other field / arena elements are being accidentally tracked. Check your area and aspect ratio
filters if you are picking up arena lights.

– Take snapshots of all targets and erroneous targeting. You can use these to tune your pipelines in the
pits.

62



Limelight Documentation, Release 1.0

16.3 Pipeline Tuning

• Use the lowest exposure possible, and increase black level offset until field lights and LED reflections are
removed from the image.

• Test your thresholding while far away and angled away from your target.

• Use 2019.7’s “Smart Speckle Rejection” to filter unwanted LED reflections

16.4 Before Connecting to the Field

• Give your laptop a static IP configuration.

– IP: 10.TE.AM.5

– Subnet Mask: 255.0.0.0

– Gateway: 10.TE.AM.1

• Give your RIO a static IP configuration.

– IP: “10.TE.AM.2”

– Subnet Mask: 255.255.255.0 <- NOTE THE DIFFERENCE HERE

– Gateway: 10.TE.AM.1

• Give your Limelights unique hostnames (if using multiple).

• Give your Limelights unique static IP configurations.

– Always start with “.11” addresses and go upward. (10.9.87.11, etc.)

– The use of other addresses may cause your units to malfunction when connected to the FMS.

– IP: “10.TE.AM.11”

– Subnet mask: 255.255.255.0

– Gateway: “10.TE.AM.1”

Additional information: https://wpilib.screenstepslive.com/s/currentCS/m/troubleshooting/l/
319135-ip-networking-at-the-event

16.5 Before Every Match

• Check all power and Ethernet cables going to your Limelights.

• Check all electrical connections for looseness and frayed wires.

• Check all mounting screws / zipties / tape.

• Observe ESD precautions at all times.

16.6 Bandwidth

• Some teams run two Limelights with two USB cameras while staying well under under the bandwidth limit.
Follow the steps below to reduce bandwidth.
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• Rather than using driver mode, create a “driver” pipeline. Turn down the exposure to reduce stream bandwidth.

• Using a USB camera? Use the “stream” NT key to enable picture-in-picture mode. This will dramatically
reduce stream bandwidth.

• Turn the stream rate to “low” in the settings page if streaming isn’t critical for driving.

• Use the 160x120 stream option introduced in 2019.7.

16.7 Troubleshooting

• Try to access the stream at <IP>:5800 with a web browser. This should help you determine the root of your
issues.

• Restart your dashboard

• Reboot your computer

• Reboot your robot if the field has been reset

• Broken Ethernet cables can be the cause of intermittent networking issues.

• Always use static IP configurations on the field.
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CHAPTER 17

Frequently Asked Questions

17.1 Why is limelight using a low (320x240) resolution?

Using a lower resolution allows us to run the vision pipeline at a high framrate. Limelight provides tracking data fast
enough to use its outputs to directly drive a PID loop on your robot. This makes integrating vision into your robot
extremely simple; limelight is just another sensor! Additionally, we have used even lower resolutions for the past two
years in FRC. In our final event (China), our 2016 robot never mis-aimed a shot while using 160x120 resolution and
aiming at one of the most difficult targets FRC has used to-date (the high goal in stronghold). All of its shots were
auto-aimed; it was impossible to manually aim that robot.

17.2 What if the game calls for a different tracking algorithm?

We believe that Limelight will give you the tools to solve the vision tracking challenge for any FRC game. However
if some challenge comes up which we have not anticipated, we will add the features needed for you to track the new
type of target.

17.3 Why is there an extra usb port?

You can add a usb camera to limelight to act as a secondary driver or backup camera. The second camera stream will
automatically appear alongside the primary camera stream. Limelight’s video stream uses very little bandwidth so you
can safely use this feature for a competitive advantage.

17.4 How do I view the video stream?

The video stream exists at http://<Limelight’s IP address or limelight.local>:5800. Stream info is also posted to
network tables so SmartDashbaord and Shuffleboard (test LV dashboard) will automatically find it.
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17.5 Are the eight LEDs bright enough?

The total light output of the LEDs is 400 lumens, and the LED cones actually increase the illuminance (functional
light) of the device. To compare, the common two-ring setup has a total output of roughly 250 lumens.

17.6 Does Limelight support protocols other than NetworkTables?

Limelight also streams tx, ty, ta, and ts over the Serial (UART) pins at the back of the enclosure.

17.7 Does Limelight support Active PoE?

Limelight only supports passive PoE. Active POE requires a handshake between the sending and receiving POE
devices. Limelight is designed to work with a passive POE injector. Just supply 12V by wiring the passive POE
injector right into your PDP.

17.8 Should I plug Limelight into our VRM (Voltage Regulator Mod-
ule)?

Limelight is designed to be connected to the main robot battery. It contains its own voltage regulators.

17.9 My robot has extreme voltage swings while driving, will this
damage my Limelight?

We specifically designed Limelight to handle the “noisy” power available on a typical FRC robot. It contains the
voltage regulators needed to generate the voltages it needs to operate as long its input voltage is above 6V.

17.10 Will Limelight’s LEDs dim when our robot’s voltage drops?

We designed the LED array on Limelight to produce a consistent brightness all the way down to 7.5V. So your tracking
should remain consistent even when your robot motors are putting a heavy load on the battery. This can be an important
feature for robots with high-traction drivetrains that aim by turning in place.
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CHAPTER 18

Additional Resources

18.1 Team 254 Vision Talk

Team 254 gave an this excellent talk on how to do vision tracking using an android phone! Their talk is packed
with very good information on the theory and implementation of vision tracking. https://www.youtube.com/watch?v=
rLwOkAJqImo

18.2 WPI Vision Processing Resources

These pages are loaded with information on various ways to implement your own vision processing pipeline. https:
//wpilib.screenstepslive.com/s/currentCS/m/vision

18.3 GRIP

Grip is a tool that lets you build OpenCV pipelines using a drag-and-drop GUI. https://wpilib.screenstepslive.com/s/
currentCS/m/vision/l/463566-introduction-to-grip
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CHAPTER 19

Software Change Log

Contact us or post to CD to suggest upgrades for Limelight!

19.1 2019.7 (4/5/19)

2019.7 adds two new features.

19.1.1 Features

• 160x120 30fps streaming

– Smoother, lower-bandwidth streaming for teams that use wide-angle USB cameras. Our 180-degree cam-
era stream bandwidth dropped from ~3.7mbps to ~1.8 mbps.

– Change the stream resolution in the settings tab.

– Changing the stream resolution on a Limelight with a wide-angle USB camera attached. No Picture-in-Picture, and normal stream rate.

*

• Smart Speckle Rejection

– Teams that have mounted their cameras in-line with the target this year have had to deal with unwanted
LED reflections.

68



Limelight Documentation, Release 1.0

– The area slider does not always solve this problem, as teams want to track small vision targets at large
distances.

– This new feature will automatically reject relatively small contours that have passed through all other
filters.

– As a robot moves away from a vision target (decreasing its size), SSR will automatically adjust to only
reject relatively small contours.

–

19.1.2 Changes

• Tooltips

– Tooltips are now avaiable on some Limelight controls

–

19.2 2019.6.1 Hotfix (3/14/19)

2019.6.1 fixes Grip uploads.

19.3 2019.6 (3/12/19)

2019.6 is all about reliability.

19.3.1 Bugfixes

• USB Cameras

– Address issue that could cause some USB cameras to fail on boot.

• FMS

– Make Limelight more (if not completely) resistant to FMS restarts and field / laptop networking changes.

– Limelight will no longer hang after a sudden client networking change.

• Raw Contour Sorting (BREAKING CHANGE)

– Intersection filters no longer affect raw contour sorting.

• Smartdashboard auto-posting

*LL auto-posts certain pieces of information to SmartDashboard (IP Address, Interface url, etc.).
The names of these values now contain the hostname.

19.3.2 Features & Changes

• Significantly increase precision and stability of the compute3d feature. Translation and rotation measurements
are stable at larger distances.

• Max Black Level Offset increased to 40 (from 25) for even darker images.
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• New “Closest” sort options in the “Output” tab while “Dual Crosshair” mode is enabled.

– Standard - Current “closest” sorting implementation with “Dual Crosshair” mode.

– Standard V2 - Experimental, smart “closest” sorting implementation with “Dual Crosshair” mode.

– Average of Crosshairs - “Closest” sort origin with “Dual Crosshair” mode is the average of the two
crosshairs.

– Crosshair A - “Closest” sort origin with “Dual Crosshair” mode is crosshair A.

– Crosshair B - “Closest” sort origin with “Dual Crosshair” mode is crosshair B.

• New “LED Mode” pipeline options: “Left Half”, “Right Half”

• Floating-point raw corner values while compute3D is enabled.

• Hide image decorations while using magic wands

• Larger stream in web interface

19.4 2019.5 (2/9/19)

With 2019.5 we are introducing the brand new compute3D camera localization feature. Only a handful of teams have
ever attempted to add this feature to their vision systems, and now it is available to all Limelight 1 and Limelight 2
users.

This is not a silver bullet for this year’s game. We highly recommend thinking of creative ways to use the standard
high-speed 90 fps tracking unless this feature is absolutely necessary.

All example gifs were created with an LL2 mounted on the side of a kitbot. This is why you will see slight changes in
translation during turns.

19.4.1 Features

• High-Precision Mode and PnP

– In the following gif, a Limelight 2 was placed 37 inches behind and 14.5 inches to the right of the target.

*

– The Limelight was later turned by hand. Notice how the distances remain mostly unchanged:

*

– With 2019.4, we introduced corner sending. This allowed advanced teams to write their own algorithms
using OpenCV’s solvePNP(). With 2019.5, this is all done on-board.

– Upload a plain-text csv file with a model of your target. We have pre-built models of 2019 targets hosted
on our website. All models must have a centered origin, and use counter-clockwise point ordering with
inch scaling.

– Enable the new high-res 960x720 mode, and then enable “Solve 3D” to aquire the position and rotation of
your Limelight relative to your target.

– Corner numbers are now displayed on the image for easier model creation and threshold tuning.

– Read all 6 dimensions of your camera’s transform (x,y,z,pitch,yaw,roll) by reading the “camtran” network-
table number array.
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• Black Level

– With the new black level slider, thresholding is even easier. Increase the black level offset to further darken
your images.

–

19.4.2 Breaking Changes

• The reported vertical FOV for LL2 has been fixed to match the listed value of 49.7 degrees. This will change
your “ty” values

19.4.3 Bug Fixes

• Fix stream-only crash that could occur when fisheye USB cameras were attached.

• Fix rare hang caused by networking-related driver.

• Corner approximation is now always active.

19.5 2019.4 (1/26/19)

We believe all critical bug reports are covered with this release.

19.5.1 Features

• Corners

– Send the corners of your target as two arrays (tcornx, tcorny) by enabling “send corners” in the “Output”
tab. This will further enable teams that are interested in advanced pipelines with methods like solvePNP().

– Adjust corner approximation with the “corner approximation” slider in the “Output” tab.

19.5.2 Bug Fixes

• Fix hang + rare crash that would occur when two targets had exactly the same area, x coordinate, or y coordinate.

• Fix area calculation in dual- and tri-target modes.

• Optimize contour sorting for better performance.

19.6 2019.3 (1/19/19)

2019.3 addresses a number of bugs and feature requests.
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19.6.1 Features

• Stream Rate (bandwidth reduction)

– Set the stream rate to “low” in the settings page for a lower-bandwidth 15fps video stream.

• Raw Contours disabled in NetworkTables (bandwidth reduction)

– Raw contours are now disabled by default. This will further reduce Limelight’s overall bandwidth.

– There are now ~180 fewer networktables entries submitted per second by default.

– See the new “Raw Contours” pipeline option in the “Output” tab to re-enable raw contours.

• Active Pipeline Index

– Read the networktable key “getpipe” to get the true active pipeline index of the camera. This is updated at
90hz.

– The active pipeline index is now written to the videostream underneath the FPS display.

• Left and Right Intersection Filters

– Teams may now choose between “left” and “right” dual-contour intersection filters. The “above” and
“below” intersection filters were added in 2019.2.

19.6.2 Bug Fixes

• Fix LabView Dashboard streaming bug introduced in 2019.2

• The webpage no longer requests icon fonts from a the internet. All fonts are stored locally. This should speed
up interface loading.

• Reduce “driver mode” exposure.

• Fix “Distance Transform” GRIP implementation

• Fix 20-second communication delays caused by changing the hostname.

19.7 2019.2 (1/7/19)

2019.2 adds new features to better equip teams for the 2019 season.

• Intersection Filter

–

– The all-new intersection filter will allow teams to better distinguish between different groups of contours.
The filter extends contours to infinity, and checks where they would intersect.

• Direction Filter

–

– The new direction filter will allow teams to better distinguish between contours of different orientations.

• Additional Changes and Fixes

– IP Address is auto-posted to SmartDashboard/Shuffleboard for easier event troubleshooting. We have had
almost no reports of this being an issue, but this serves as another contingency feature.

– Pipeline name is auto-posted to SmartDashboard/Shuffleboard
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– Access the width and height of the rough bounding box in pixels with new networktables keys.

– Access the longest side and shortest side of the perfect bounding box in pixels with new networktables
keys.

– “Sort Mode” now applies to dual-contours

– “Sort Mode” is now fixed

– 5802 stream is less taxing on the camera

19.8 2019.1 (12/18/18)

2019.1 fixes all major bugs reported during the beta

• Performance is back to a steady 90fps. A driver issue was the root cause of our performance problems during
beta

• IP and hostname settings actually apply and “stick”

• Magic Wands have been re-ordered to match those of Limelight 2018 software

• We now support Grip inputs like masks through the web interface

• NetworkTables freeze fixed

19.9 2019.0 (12/10/18)

With 2019, we are introducing GRIP support, a brand-new interface, and a cleaner flashing procedure.

• Grip Support

– Build pipelines with GRIP For Limelight, and export “LL Script” files to upload to your camera.

– Masks and NetworkTables support will be added in a future update

– Expose a bare video stream at http://<limelighturl>:5802 for testing in grip

• All-new web interface

– Smaller controls

– More tooltips

– Add the ability to turn off the LEDs from the interface

– Move display combobox underneath stream for easier display switching

– Faster communication to Limelight. New web tech allowed us to simplify other parts of our code.

• Flashing

– We have migrated to “Balena Etcher”

– Etcher is twice as fast and works on all platforms

– Flash popups are fixed with the migration.

• Other

– The LED Mode has been modified to allow for pipeline-specific LED Modes. LED MODE 0 is now
“pipeline mode”, while mode 1 is “force off”

– Faster boot times in automatic IP assignment mode.
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– Optimizations and minor bug fixes

19.10 2018.5 (3/28/18)

2018.5 fixes a critical issue that would prevent users from tuning pipelines on snapshots.

19.11 2018.4 (3/19/18)

2018.4 adds new contour sorting options. These are fairly important for cube tracking this year, as teams don’t
necessarily want to track the largest cube in view. In many cases, teams want to track the cube that is closest to their
intakes. Many users have had to use the raw contours feature to implement their own sorting, so we want to make this
as easy as possible.

• Contour Sort Mode

– Select between “largest”, “smallest”, “highest”, “lowest”, “leftmost”, “rightmost”, and “closest” sort op-
tions.

– We feel that many teams will make use of the “closest” option for cube tracking.

–

19.12 2018.3 (2/28/18)

2018.3 fixes a major networktables reconnection bug which would cause NetworkTables settings changes to not prop-
agate to Limelight. Thanks to Peter Johnson and the WPILib team for pinpointing and fixing the underlying NT bug.
This was (as far as we know) the last high-priority bug facing Limelight.

Settings changes such as ledMode, pipeline, and camMode should always apply to Limelight. You should no longer
need workarounds to change Limelight settings while debugging, after restarting robot code, and after rebooting the
roborio.

19.12.1 Changes

• Fix major NT syncing issue which broke settings changes (ledMode, pipeline, and camMode) during LabView
debugging, and after a reset/reboot of the roborio.

• Eye-dropper wand:

– The eye dropper wand uses the same 10 unit window for Hue, but now uses a 30 unit window for saturation
and value. This means that thresholding is more often a one-click operation, rather than a multi-step
process.

• Snapshots

– Setting the snapshot value to “1” will only take a single snapshot and reset the value to 0. Snapshotting is
throttled to 2 snapshots per second.

– Snapshot limit increased to 100 images.

– Snapshot selector area is now scrollable to support 100 images.

–
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19.13 2018.2 (2/10/18)

2018.2 fixes all known streaming bugs with various FRC dashboards. It also makes Limelight easier to tune and more
versatile during events.

19.13.1 Features

• Thresholding wands

– Setup HSV threshold parameters in a matter of clicks

– The “Set” wand centers HSV parameters around the selected pixel

– The “Add” wand adjusts HSV parameters to include the selected pixel

–

– The “Subtract” wand adjusts HSV paramters to ignore the selected pixel

–

• Snapshots

–

– Snapshots allow users to save what Limelight is seeing during matches or event calibration, and tune
pipelines while away from the field.

– Save a snapshot with the web interface, or by posting a “1” to the “snapshot” NetworkTables key

– To view snapshots, change the “Image Source” combo box on the input tab. This will allow you to test
your pipelines on snapshots rather than Limelight’s camera feed

– Limelight will store up to 32 snapshots. It will automatically delete old snapshots if you exceed this limit.

• New Streaming options

– We’ve introduced the “stream” NetworkTables key to control Limelight’s streaming mode. We’ve received
requests for PiP (Picture-in-Picture) modes to better accomodate certain dashboards.

– 0 - Standard - Side-by-side streams if a webcam is attached to Limelight

– 1 - PiP Main - The secondary camera stream is placed in the lower-right corner of the primary camera
stream.

– 2 - PiP Secondary - The primary camera stream is placed in the lower-right corner of the secondary camera
stream.

• Increase streaming framerate to 22fps

– Look out for faster streams in an upcoming update

• Erosion and Dilation

– Enable up to one iteration of both erosion and dilation.

– Erosion will slightly erode the result of an HSV threshold. This is useful if many objects are passing
through a tuned HSV threshold.

– Dilation will slightly inflate the result of an HSV threshold. Use this to patch holes in thresholding results.

• Restart Button

– Restart Limelight’s vision tracking from the web interface. This is only useful for teams that experience
intermittent issues while debugging LabView code.
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19.13.2 Optimizations

• Drop steady-state pipeline execution time to 3.5-4ms.

19.13.3 Bug Fixes

• Fix Shuffleboard streaming issues

• Fix LabView dashboard streaming issues

19.14 2018.1 (1/8/18)

• Red-Balance slider

• Blue-Balance slider

• Better default color balance settings

• Increased max exposure setting

19.15 2018.0 (1/3/18)

On top of a ton of new case studies, more detailed documentation, and a full example program for an autonomous
STEAMWORKS shooter, the software has received a major upgrade.

19.15.1 Features

• New Vision Pipeline interface:

–

– Add up to 10 unique vision pipelines, each with custom crosshairs, thresholding options, exposure, filtering
options, etc.

– Name each vision pipeline.

– Mark any pipeline as the “default” pipeline.

– Instantly switch between pipelines during a match with the new “pipeline” NetworkTables value. This is
useful for games that have multiple vision targets (eg. the gear peg and boiler from 2017). This is also
useful for teams that need to use slightly different crosshair options per robot, field, alliance, etc.

– Download vision pipelines from Limelight to backup or share with other teams.

– Upload vision pipelines to any “slot” to use downloaded pipelines.

• Target “Grouping” option:

– Instantly prefer targets that consist of two shapes with the “dual” grouping mode”. “Single” and “Tri”
options are also available

–

• New Crosshair Calibration interface:

– “Single” and “Dual” crosshair modes.
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– “Single” mode is what Limelight utilized prior to this update. Teams align their robots manually, and
“calibrate” to re-zero targeting values about the crosshair.

– “Dual” mode is an advanced feature for robots that need a dynamic crosshair that automatically adjusts
as a target’s area / distance to target changes. We’ve used this feature on some of our shooting robots,
as some of them shot with a slight curve. This feature will also be useful for robots with uncentered
andor misaligned Limelight mounts.

– Separate X and Y calibration.

• Add Valid Target “tv” key to Network Tables.

• Add Targeting Latency “tl” key to Network Tables. “tl” measures the vision pipeline execution time. Add at
least 11 ms for capture time.

• Draw additional rectangle to help explain aspect ratio calculation.

• Remove throttling feature, and lock Limelight to 90fps.

• Disable focusing on most web interface buttons. Fixes workflow problem reported by teams who would calibrate
their crosshairs, then press “enter” to enable their robots.

• Post three “raw” contours and both crosshairs to Network Tables.

– Access a raw contour with tx0, tx1, ta0, ta1, etc.

– Access both raw crosshairs with cx0, cy0, cx1, cy1.

– All x/y values are in normalized screen space (-1.0 to 1.0)

• Add “suffix” option to web interface. Allows users to add a suffix to their Limelights’ hostnames and Network-
Tables (e.g. limelight-boiler). This feature should only be utilized if teams intend to use multiple Limelights on
a single robot.

• Display image version on web interface

19.15.2 Optimizations

• Decrease networking-related latency to ~0.2 ms from ~10ms (Thanks Thad House)

• Move stream encoding and jpg compression to third core, eliminating 10ms hitch (25 - 30ms hitch with two
cameras) seen every six frames.

• Drop steady-state pipeline execution time to 5ms with SIMD optimizations.

• New Latency testing shows 22 ms total latency from photons to targeting information.

• Upgrade Network Tables to v4 (Thanks Thad House)

• Optimize contour filtering step. Latency no longer spikes when many contours exist.
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• Much improved hysterisis tuning.

• Significantly improve responsiveness of webinterface<->limelight actions.

19.15.3 Bugfixes

• Fix minor area value inaccuracy which prevented value from reaching 100% (maxed ~99%).

• Fix half-pixel offset in all targeting calculations

• Fix camera stream info not populating for NT servers started after Limelight’s boot sequence. Regularly refresh
camera stream info.

• Fix bug which caused aspect ratio to “flip” occasionally.

• Force standard stream output (rather than thresholded output) in driver mode.

• Fix bug which prevented LEDs from blinking after resetting Networking information

19.16 2017.7 (11/21/17)

• Improved contour sorting. Was favoring small contours over larger contours.

• New Coordinate system: Center is (0,0). ty increases as the target moves “up” the y-axis, and tx increases as the
target moves “right” along the x-axis.

• More accurate angle calculations (Pinhole camera model).

• Display targeting info (tx, ty, ta, and ts) on webpage

• Default targeting values are zeros. This means zeros are returned if no target is in view.

• New side-by-side webpage layout. Still collapses to single column on small devices.

• Continuous slider updates don’t hurt config panel performance.

• Aspect ratio slider scaled such that 1:1 is centered.

19.17 2017.6 (11/13/17)

• New Imaging tool. Tested on Win7, Win8 and Win10.

• Post camera stream to cameraserver streams. Works with smart dashboard camera streams, but shuffleboard has
known bugs here

• Quartic scaling on area sliders, quadratic scaling on aspect ratio sliders. This makes tuning much easier

• Organize controls into “input”, “threshold”, “filter”, and “output” tabs

• Continuous updates while dragging sliders

• Area sent to NT as a percentage (0-100)

• Image size down to 700MB from 2.1GB
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19.18 2017.5 (11/9/17)

• Image size down to 2.1GB from 3.9GB

• Add driver mode and led mode apis

• Set ledMode to 0, 1, or 2 in the limelight table.

• Set camMode to 0 or 1 in the limelight table.

• Add ability to toggle between threshold image and raw image via web interface (will clean up in later release)

• Post camera stream to network tables under CameraPublishing/limelight/streams (will need a hotfix)

• Add skew to targeting information (“ts” in limelight table)

• Add base “CommInterface” in anticipation of more protocols

19.19 2017.4 (10/30/17)

• Lots of boot and shutdown bullet-proofing

19.20 2017.3 (10/25/17)

• Hue range is 0-179 from 0-255

• Decrease max log size, clear logs, clear apt cache

19.21 2017.2 (10/23/17)

• Manual ISO sensitivity

• Minimum exposure increased to 2

19.22 2017.1 (10/21/17)

• Read-only boot partition

• Mount all partitions with noatime option

• Disable all swap functionality (100 mb)

• Auto chmod 777 adminserver and visionserver from rc.local

• Smaller image

• “Convexity” changed to “Fullness”

• Exposure range set to 0-128 ms from 0-255 ms

• Support two cameras

• Fully support single-point calibration
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